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We investigate how the strain-induced nuclear quadrupole interaction influences the degree of nuclear spin
polarization driven by optical pumping in self-assembled quantum dots. Our calculation shows that the achiev-
able nuclear spin polarization in InxGa1−xAs quantum dots is related to the concentration of indium and the
resulting strain distribution in the dots. The interplay between the nuclear quadrupole interaction and Zeeman
splitting leads to interesting features in the magnetic field dependence of the nuclear spin polarization. Our
results are in qualitative agreement with measured nuclear spin polarization by various experimental groups.
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I. INTRODUCTION

Nuclear spin dynamics has been studied extensively in
many fields.1,2 In recent years, nuclear spin dynamics in
semiconductor quantum dots has attracted intense interest
because of the excellent quantum coherence properties of
nuclear spins. Indeed, nuclear spins in nanostructures have
been suggested as qubits for a quantum computer3 and for
use as quantum memory.4 For either purpose, high degree of
nuclear spin polarization �NSP� is a prerequisite.

Nuclear spins in nanostructures also form an important
environment for electron spins, which have been proposed as
a candidate for qubits.5 Through the hyperfine interaction the
nuclear spins create a spatially and temporally fluctuating
magnetic field for the electron spins, which leads to spin
decoherence.6–12 It has been suggested theoretically that such
decoherence could potentially be suppressed if nuclear spin
fluctuations are suppressed,13–15 and one way to realize such
suppression is via dynamic nuclear spin polarization. Fur-
thermore, the coupled electron-nuclear spin problem is an
intriguing example of a quantum many-body problem, and is
still not solved completely.

Dynamic NSP �DNSP� has been studied for many
decades.16 It has been demonstrated in semiconductor quan-
tum wells17–19 and quantum dots20–26 through a variety of
experiments. Physically, DNSP can be achieved either elec-
trically or optically, where a pumped electron can transfer its
spin polarization to nuclear spins via the contact hyperfine
interaction. A range of values for nuclear spin polarization
has been reported by several experimental groups. For ex-
ample, using electrically controlled DNSP, Petta et al.24 re-
ported approximately 1% NSP in lateral coupled GaAs
double quantum dots; while Baugh et al.22 reported 40%
NSP in vertical coupled GaAs quantum dots with 5% In.
With optically pumped DNSP, Gammon et al.20 reported
60% NSP in interface fluctuation GaAs quantum dots, while
recent experiments have achieved NSP in InxGa1−xAs self-
assembled quantum dots at various magnetic fields. In par-
ticular, approximately 10–20 % of NSP is created in
In0.9Ga0.1As quantum dots �1 T,23 40% in In0.6Ga0.4As at
around 2 T,27–29 and 80% in In0.9Ga0.1As at 5 T.30 It is evi-
dent that the experimental results vary greatly as experimen-
tal conditions and physical systems are varied. So far there
has been no systematic theoretical studies of NSP and how it
depends on the various system parameters such as applied
field and material composition.

In this paper we study dynamic nuclear spin polarization
in InxGa1−xAs quantum dots via optical pumping of confined
electrons. These self-assembled dots are generally highly
strained and we are particularly interested in the NSP of
these dots in different strain environments. Specifically, the
strain breaks the cubic symmetry of the crystal lattice and
creates an electric field gradient which couples to the nuclear
quadrupole moment,31 which in turn leads to mixing of
nuclear spin eigenstates. We use a simplified model of the
quantum dot where the electric field gradient is axially sym-
metric. We first study how the As NSP responds to various
strain strengths, angles, and cotunneling constants in mag-
netic fields. For the electron-nuclear spin transfer, we con-
sider both phonon-assisted and cotunneling-assisted spin flip
processes. Lastly, we consider NSP of InxGa1−xAs quantum
dots with different compositions.

The paper is organized as follows. We describe the
scheme of DNSP in Sec. II and our model Hamiltonian in
Sec. III. We show our results of nuclear spin polarization in
As nuclei and in different compositions of InxGa1−xAs quan-
tum dots at various magnetic fields in Sec. IV. We discuss
some interesting features related to our calculation in Sec. V.
Finally, we summarize our results in Sec. VI and draw our
conclusions.

II. SCHEME OF NUCLEAR SPIN POLARIZATION

InxGa1−xAs self-assembled quantum dots �SAQDs� are
formed by a strain-driven process, where the strain arises
from the lattice mismatch between the InAs deposition layers
and the GaAs substrate. The strain in the QDs breaks the
lattice symmetry and creates electric field gradients in the
dots. The shape of InxGa1−xAs QDs varies among experi-
ments, ranging from pancakelike to pyramidlike and dome-
like. The resulting distribution of electric field gradients thus
also differs from dot to dot. Even in the same dot, the strain
distribution is not uniform. For example, the strain at the
edge of a quantum dot is generally larger than at the center of
the dot.32 Therefore, nuclear spins in different regions of a
QD experience electric field gradients of different strengths
and directions. For an estimate of NSP, we start with a sim-
plified model of a pancakelike cylindrically symmetric QD
as shown in Fig. 1. The electric field gradients in such a dot
are thus axially symmetric. The largest electric field gradient
VZZ is along the principal axis Z, which is defined to be
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normal to the pancake surface. For instance, for a lattice site
in the xz plane, Z would be in the xz plane as well, and
deviates from the growth direction �the z axis� by an angle of
�.

We base our calculation on the experimental conditions in
Refs. 27, 28, 33, and 34 �see Fig. 2�, where the SAQD is
embedded in a Schottky diode heterostructure, so that the
charged states of the QD can be controlled. In addition, the
gate voltage can be tuned to allow zero or one charge �elec-
tron or hole� on the dot.

In such a system dynamic nuclear spin polarization is re-
alized via optical pumping. A circularly polarized photon
creates an electron-hole pair, which is then captured in the
QD as a negative trion,24,34 neutral exciton,33 or positive
trion.26–29 When the QD contains one electron, this electron
is likely spin polarized and can polarize a nuclear spin
through the hyperfine interaction. The probability to realize
this spin transfer process depends on the experimental con-
ditions, such as the type of excitation used �pulsed or cw�
and the initial charged states in the quantum dot �X0, X−, or
X+�. Therefore, an experimentally determined factor fe is
used to modify the electron-nuclear spin-transfer probability
�see Sec. III C�.

In a finite magnetic field the hyperfine-mediated transfer
of polarization from the electron spin to the nuclear spins has

to be assisted by another process because of the large mis-
match of the electron and nuclear Zeeman energies. In our
case we consider phonon-assisted and tunneling-assisted pro-
cesses. More specifically, in the Schottky-diode configuration
the confined electron can flip its spin via cotunneling to the
external reservoir �For details see Sec. III C 1�. This
cotunneling-assisted spin-flip process is efficient at low mag-
netic fields. In the high-field regions �or in an isolated QD�,
the electron-phonon interaction provides the more efficient
channel to compensate for the energy mismatch between
electron and nuclear spins. �For details see Sec. III C 2.�

III. MODEL HAMILTONIAN

The total Hamiltonian for the nuclear spin polarization
scheme we consider is given as follows:

Htot = Hn + He + Hhf ,

where Hn is the Hamiltonian for the nuclear spins in the
quantum dot, He is for the electron spin, and Hhf is the hy-
perfine interaction between the electron and nuclear spins.
Below we describe each of the terms in Htot in detail and
discuss the role they play in the DNSP process.

A. Hamiltonian of nuclear spin in quantum dots

In the presence of an external magnetic field �along the z
axis, which is the growth direction�, the effective Hamil-
tonian of nuclear spins in our simplified model of a quantum
dot �see Fig. 1� consists of three main parts: Zeeman split-
ting, the nuclear electric quadrupole interaction, and nuclear
spin dipolar interactions,

Hn = Hz
n + HQ + Hd, �1�

where

Hz
n = �

i=1

N

��BzIz
i ,

HQ = �
i=1

N
eQVZZ

i

4I�2I − 1�
�3�IZ

i �2 − I�I + 1�� ,

Hd = �
i�j

N
�0�2�2

4�
� Ii · I j

Rij
3 −

3�Ii · Rij��I j · Rij�
Rij

5 � .

Hz
n represents the nuclear Zeeman energy �Ez

n�, where Iz is
the projection of a nuclear spin along the external magnetic
field and � is the nuclear gyromagnetic ratio �see Table I�.

HQ represents the electric quadrupole interaction �EQ�,1,2

through which the nuclear spins in an InxGa1−xAs SAQD
couple to the electric field gradients in the crystal lattice. The
asymmetric part of the quadrupole interaction is neglected
here because we assume a pancake-shaped QD, where VZZ
�VXX ,VYY. Q is the electric quadrupole moment of a nucleus
and e is the elementary charge. VZZ is the electric field gra-
dient along the principal axis Z. VZZ=S11eZZ,31 where the
constant S11 is experimentally determined �see in Table I�

x

Growth direction−z

extB

θ

Principal axis−Z

FIG. 1. �Color online� A model of a self-assembled quantum
dot. We assume the field gradients in the self-assembled quantum
dot are axially symmetric. The largest electric field gradient com-
ponent VZZ is along the principal axis Z, which deviates from the
growth direction �the z axis� by an angle �. The external magnetic
field is assumed to be along the z axis.

Nuclear spins

FE

n−GaAs

σ+

FIG. 2. �Color online� Schematic of the setup for a typical op-
tical orientation experiment �Refs. 33 and 34� The self-assembled
quantum dot is embedded in a Schottky diode heterostructure,
where the gate voltage is tuned to allow only one-electron orbital
state below the Fermi level. Nuclear spins are polarized by an op-
tically pumped electron captured in the quantum dot.
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and eZZ is the Z component of the strain tensor, which is
approximately 4–8 % for InxGa1−xAs QDs with different
compositions.32,38–42 The electric field gradients introduced
by charged states in the QD �Ref. 43� are at least two orders
of magnitude smaller than the electric field gradient caused
by the broken symmetry of the crystal lattice, therefore we
exclude the effect of the former.

Hd represents the dipolar interaction between different
nuclear spins, where Rjk is the distance between the ith and
the jth the nucleus, �0 is the free space permeability. The
local field Bloc that this dipolar coupling produces is around 1
G and the dynamical effect of the dipolar interaction is
nuclear spin diffusion. In our calculation, we do not deal
with the case when the external magnetic field is smaller

than the local field �the smallest external field we use is 10
mT�. Furthermore, nuclear spin diffusion is strongly sup-
pressed in a small QD,44 and its time scale �tens of seconds
to minutes45� is much longer than the time scale of DNSP in
our study. Therefore we exclude Hd in our calculation. Since
Hd is the only direct interaction between nuclear spins, its
removal significantly simplifies our study: the nuclear spins
can now be treated independently from each other. The
hyperfine-mediated nuclear spin interaction9,46,47 is also ne-
glected in our calculation, as the hyperfine interaction is only
turned on randomly for a small fraction of time in experi-
ments, as we will discuss in Sec. III C.

The nuclear spin Hamiltonian is thus simplified as

Hn = ��BzIz +
eQVZZ

4I�2I − 1��IZ
2 −

1

3
I�I + 1�� .

In our simplified model of the quantum dot, the principal
axis Z for the largest electric field gradient VZZ deviates from
the z axis by an angle � and IZ is the projection of a nuclear
spin along the principal axis Z. For a pancake-shaped QD,
the angle � is generally quite small. Therefore, while for all
the calculations presented in this paper we treat the nuclear
spin Hamiltonian �1� exactly, for the qualitative discussion in
Sec. IV we take a small-angle approximation and simplify
Hamiltonian �1�. For example, in the case of I=3 /2 we ob-
tain,

Iz =
3

2
Iz =

1

2
Iz = −

1

2
Iz = −

3

2

Hz
n + HQ =�

3

2
Ez

n + EQ� 	3EQ�
	3

2
EQ�2 0

	3EQ�
1

2
Ez

n − EQ� 0
	3

2
EQ�2

	3

2
EQ�2 0 −

1

2
Ez

n − EQ� − 	3EQ�

0
	3

2
EQ�2 − 	3EQ� −

3

2
Ez

n + EQ�


 , �2�

where EQ� =EQ�3 cos2 �−1� /2�EQ. When the off-diagonal
terms in Eq. �2� are small compared to the diagonal terms,
we can construct the new eigenstates perturbatively. In a
nondegenerate case, the nuclear spin eigenstates are as fol-
lows:

�1 = �+
3

2
� + a�+

1

2
� + b�−

1

2
� ,

�2 = �+
1

2
� − a�+

3

2
� + c�−

3

2
� ,

�3 = �−
1

2
� − b�+

3

2
� − d�−

3

2
� ,

�4 = �−
3

2
� + c�+

1

2
� + d�−

1

2
� , �3�

where a=	3EQ� / �Ez
n+2EQ�, b=	3EQ�2 /4�Ez

n+EQ�,
c=	3EQ�2 /4�Ez

n−EQ�, and d=	3EQ� / �Ez
n−2EQ�. For a de-

generate case as shown in Figs. 3�b� and 3�c�, the eigenstates
have to be solved by directly diagonalizing the Hamiltonian

TABLE I. Material parameters used in our calculation. Nuclear
electric quadrupole moment Q and constant S11 �which relates elec-
tric field gradient to strain� are taken from Refs. 35 and 36. Nuclear
spin gyromagnetic ratios are taken from Ref. 37.

Elements In Ga As

Nuclear spin I 9/2 3/2 3/2

Electric quadrupole moment Q �10−24 cm2� 0.86 0.27 0.2

S11 �1015 statcoulombs /cm3� 16.7 9.1 13

Gyromagnetic ratio � ��eV /T� 0.039 0.042 0.03

Hyperfine constant A ��eV� 56 42 46
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in Eq. �2�. Taking the state 2–4 degeneracy, for example, one
would expect a complete mixing between state 2 and state 4.

B. Hamiltonian of electron spin in quantum dots

The effective Hamiltonian of the electron in the quantum
dot consists of three main parts: Zeeman splitting, tunnel
coupling to the external reservoir, and the electron-phonon
interaction,

He = Hz
e + HT + Hep,

where

Hz
e = − g��BBzSz,

HT = �
k	


knk	 + 
0�
	

n	 + Un↑n↓ + �
k	

Vk�ck	
† c	 + c	

†ck	� ,

�4�

Hep = �
q�

Mq��a−q�
† + aq��exp�iq · r� .

Here Hz
e represents the electron Zeeman energy, where g� is

the electron effective g factor in InxGa1−xAs QDs, �B is the
Bohr magneton, and Sz is the z component of the electron
spin operator. HT is the Anderson Hamiltonian,48–50 suitable
for describing the experimental setup in our consideration
�see Fig. 2�, where a QD is tunnel coupled to the outside
Fermi sea. In Eq. �4�, c† and c represent electron creation and
annihilation operators, and n the number operators. We de-
scribe a reservoir state with index k, energy 
k, and electron
spin index 	. The single electron energy level in the quantum
dot is 
0. U is the on-site Coulomb interaction and Vk is the
tunneling matrix element. Hep represents the electron-phonon
coupling, where a−q�

† and aq� represent phonon creation and

annihilation operators, with quasimomentum q and branch
index �. We consider both the deformation potential and pi-
ezoelectric potential in Mq�.50

C. Hyperfine interaction

In our scheme, NSP is pumped by optically oriented elec-
trons via the contact hyperfine interaction,

Hhf�t� = h�t��
k

N

A���Rk��2  �Iz
kSz +

1

2
�I+

kS− + I−
kS+�� ,

�5�

where A is the hyperfine coupling constant �see Table I�. N is
approximately 104 in an InxGa1−xAs SAQD. ��Rk� is the
electron wave function at the kth nucleus site, which is
Gaussian for harmonic confinement. For our calculations
presented in this paper, we take ���Rk��2 as 1 /N, effectively
assuming a constant electron wave function in the QD. This
assumption makes the definition of nuclear spin polarization
well defined, while in the case of a Gaussian wave function
the calculation of overall NSP depends on where the dot is
truncated, as the edge of the dot would generally be only
slightly polarized. h�t� is a random function depending on
the experimental procedures and conditions. While we are
not going to describe the full details of each pumping
scheme, the nature of h�t� depends on whether the system is
in the trion or neutral exciton regime. For example, for the
X+ scheme, h�t� is dependent on the trapping and recombi-
nation of the electron;27 while for X− scheme it is dependent
on the exciton recombination and electron tunneling
time;34,51 and for X0 it is dependent on the exciton recombi-
nation time.33 The fraction fe is defined as the mean value of
this temporal function h�t�, and it represents the fraction of
the time when only one electron is left in the quantum dot
and the hyperfine interaction is “turned on,” so that the
electron-nuclear spin flip flop can be realized. We use 0.035
for fe in our calculations based on experimental
observations.51 The small value of fe, together with the fact
that h�t� is random in time to a degree, justify our approxi-
mation of neglecting higher-order effects of the hyperfine
interaction throughout our calculations.

Depending on the helicity of the optical excitation
�	+ /	−� relative to the applied external magnetic field, and
through the flip-flop terms in the hyperfine interaction, the
electron can pump nuclear spins either to the highest-energy
spin state or the lowest-energy state. These spin flip flops are
responsible for pumping the nuclear spins in the NSP process
�blue one-way arrows in Fig. 5�. In Secs. III C 1 and III C 2
we calculate the pumping rates based on the specific physical
processes involved.

1. Cotunneling-assisted spin-flip processes

The electron spin in the QD can interact with an electron
spin in the Fermi sea via cotunneling processes so that the
electron Zeeman levels are broadened. The spin-flip prob-
ability and level broadening can be calculated applying
Schrieffer-Wolf transformation to Eq. �4�.48,49,52,53 For each
Zeeman level,

3
2

4
1

1

42

3

1

3 4
2

4
3
2

1

(b)

(a) (c)

(d)

FIG. 3. Sketches of the energy-level diagram of a single nuclear
spin �not to scale�. Due to the presence of the quadrupole interac-
tion, the eigenstates are generally no longer the eigenvectors of Iz.
We label the real eigenstates as ��1, �2, �3, and �4�, which are
combinations of Iz eigenstates with mz= � 3

2 , 1
2 ,− 1

2 ,− 3
2 �. �a� Low-field

situations, when the quadrupole interaction �EQ� is stronger than the
nuclear Zeeman effect �Ez

n�. �b� 2–4 degeneracy, when the quadru-
pole interaction and nuclear Zeeman energy are resonant �Ez

n=EQ�.
�c� 3–4 degeneracy, when Ez

n=2EQ. �d� High magnetic field region,
when the Zeeman energy is dominant, and the quadrupole interac-
tion is negligible.
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��
i� =
1

2�

�c

�
i − 
0�2 + �c
2/4

,

where �c is the level broadening due to the cotunneling pro-
cesses.

The probability of electron-nuclear spin flip-flop pro-
cesses increases when the overlap between the two broad-
ened electron Zeeman states increases. Therefore the
cotunneling-assisted spin flip flop is more important at low
magnetic fields. The transition rate between an initial state
�↑i and a final state �↓j can be calculated with the Fermi’s
golden rule as,

Di,j =
2�

�
fe�A

N
�2

��↓ j�I+S−�↑i�2

� ��
i���
 f���
 f − 
i − �E�d
id
 f

� �A

N
�2 2fe�c��↓ j�I+S−�↑i�2

�2 + �c
2�− g��BBz + �n�2 , �6�

where �n=2A�Iz stands for the Overhauser shift and the +
sign in front of the Overhauser field is due to our choice here
that the external magnetic field is antiparallel to the Over-
hauser field. For parallel fields, −�n should be used. The
correlation time, �c=1 /�c, describes the broadening of QD
electron states due to cotunneling processes. It is estimated
for a typical Schottky structure to be �20 ns.48 At low to
intermediate magnetic fields, the cotunneling-assisted spin-
flip processes are the most efficient in building up NSP in the
QD, as shown in Fig. 4.

2. Phonon-assisted spin-flip processes

For an isolated dot, or a dot described in 1 in higher field
regions, the cotunneling-assisted spin-flip processes become
less efficient due to the larger electronic Zeeman splitting.
Now the phonon-assisted spin-flip processes give the most
efficient DNSP channel. The pumping rates due to the
phonon-assisted spin-flip processes are

�i,j
ph =

2�

�
�
q�

�Tep�2  �n̄q����sq − Ez
e� + �n̄q� + 1���Ez

e + �sq��

= Nq�fdef�Ez
e� + fpiezo�Ez

e�� ,

where

Tep = �
l�m

�m↓j�Hhf�l↑i�l�Hep�m
Em − El + Ez

e +
�m�Hep�l�l↓j�Hhf�m↑i

Em − El − Ez
e ,

fdef�Ez
e� �

l0
2

24�

�2fe

�s
�A

N
�2 �Ez

e�5

��s�6 ��↓ j�I+S−�↑i�2

�� 1

��−
�1 +

Ez
e

��−
� +

1

��+
�1 −

Ez
e

��+
��2

+ � 1

��+
�1 +

Ez
e

��+
� +

1

��−
�1 −

Ez
e

��−
��2� ,

fpiezo�Ez
e� �

l0
2

30�

�ee14�2fe

�s
�A

N
�2 �Ez

e�3

��s�4 ��↓ j�I+S−�↑i�2

�� 1

��−
�1 +

Ez
e

��−
� +

1

��+
�1 −

Ez
e

��+
��2

+ � 1

��+
�1 +

Ez
e

��+
� +

1

��−
�1 −

Ez
e

��−
��2� .

The initial state is �m↑ i and the final state is �m↓ j, where i
and j represent nuclear spin eigenstates. m stands for the
initial orbital state �QD s orbital�. n̄q� is the Bose-Einstein
distribution for phonons with momentum q and phonon

FIG. 4. �Color online� Comparison of cotunneling-assisted
nuclear spin pumping rates with phonon-assisted rates. Here the
Overhauser field is antiparallel to the external magnetic field and
the angle between the largest electric field gradient and the external
magnetic field is 2° �we use these conditions in the following fig-
ures, unless otherwise noted�. The cotunneling-assisted spin-flip
process is more efficient at low to intermediate magnetic fields �B
�5 T�. For higher fields, the phonon-assisted spin-flip process is
more efficient.

p

p

p

p

1

2

3

4

D

D

D

23

34

12+ Γ

14F24F

13F

23F

34F

12F12

+ Γ

+ Γ

23

34

FIG. 5. �Color online� Transitions induced by the hyperfine in-
teraction among nuclear spin states with I=3 /2. The blue one-way
arrows represent the transitions induced by the flip-flop terms in Eq.
�5� and are responsible for pumping of the nuclear spins by the
trapped electron spin. For an open-dot system as shown in Fig. 2,
the cotunneling-assisted spin-flip rate D is dominant at low to in-
termediate magnetic fields. At high fields or in an isolated dot, the
phonon-assisted pumping rate �ph is dominant. The red two-way
arrows represent transitions due to the mixture of different nuclear
spin states, which originate from the IzSz term in Eq. �5�. These
processes are responsible for depolarization.
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branch � at temperature T. We consider both phonon absorp-
tion and emission processes, depending on the direction of
the total magnetic field. Nq= n̄q� for phonon emission pro-
cesses while Nq= n̄q�+1 for phonon absorption processes.
fdef�Ez

e� is obtained from the deformation potential term and
fpiezo�Ez

e� is obtained from the piezoelectric interaction. Tep is
the transition amplitude for the phonon-assisted spin-flip pro-
cesses. Here the hyperfine interaction not only induces
electron-nuclear spin flip flop but also mixes electron spin
and orbital degrees of freedom.54 The electron spin-up
�-down� state in the m orbital is mixed with the electron
spin-down �-up� state from a higher orbital state l. Em and El
represent the energies of the m and l Fock-Darwin orbital
states. For simplicity, we only consider the phonon emission/
absorption between s orbital and p orbital states �we do not
anticipate the inclusion of contributions from higher orbital
states to qualitatively alter our results�. � is the deformation
potential constant. The piezoelectric constant is denoted as
ee14=210−10 J /m, sound speed: s=3103 m /s, electron
density in InAs: �=5.7103 Kg /m3. In the presence of an
external magnetic field, Fock-Darwin energy levels can be
represented as ���=�����c /2, where �� is the elec-
tronic confinement in the QD and is about 30 meV in the
type of QD we consider. The cyclotron frequency is �c
=eB /m�, where m�=0.023m0 is the effective electron mass
in the InAs QDs. l0 is the lateral dimension of the QD. The
transition rate due to the deformation potential is propor-
tional to the fifth power of the electronic Zeeman splitting
while the contribution from the piezoelectric interaction is
proportional to the third power of the electronic Zeeman spit-
ting.

3. Strain-induced depolarization

Due to the strain-induced quadrupole interaction, where
the principal axis Z is generally not parallel to the external
field direction z, the nuclear spin eigenstates are a mixture of
Iz eigenstates. This means that the nonflip-flop term in Eq.

�5�, Iz
kSz, can now induce transitions between different

nuclear spin states and cause NSP �see red two-way arrows
in Fig. 5�. Since the energy transfer between these nuclear
spin states is generally much less than cotunneling energy
�0.033 �eV �Ref. 48��, this process is not limited by energy
conservation considerations. These depolarization rates can
be calculated by the Fermi’s golden rule,

Fij = �AAs

N
�2 2�cfe��i�Iz�j�2

�2 + �c
2�Ei

n − Ej
n�2 , �7�

where i and j represent nuclear spin eigenstates, and Ei
n and

Ej
n stand for the nuclear spin eigenenergies.

D. Master equation of population

Depending on the helicity of the excitation photon
�	+ /	−�, the electron can pump nuclear spins either to the
higher-energy spin states or the lower-energy states. Take,
for example, nuclear spins being pumped to the highest-
energy nuclear spin state, as shown in Fig. 5, the average
NSP can be evaluated by the master equation of population
�see Eq. �8��,2 which is determined by the balance between
the pumping and depolarization channels,

dpi

dt
= �

j�i

Wj,ipj − �
j�i

Wi,jpi, �8�

where Wj,i�Wi,j represents the total transition rate between
the i and j states, and pi represents the nuclear spin popula-
tion at ith state with i=1,2 ,3 ,4,

d

dt�
p1

p2

p3

p4

� = M�
p1

p2

p3

p4

� ,

where

M = �
− �F12 + F13 + F14� �D12� + F12� F13 F14

F12 − �D12� + F12 + F23 + F24� �F23 + D23� � F24

F13 F23 − �D23� + F23 + F34 + F13� �D34� + F34�
F14 F24 F34 − �D34� + F34 + F24 + F14�

� .

Here Dij� =Dij +�ij is the total pumping rate. The system is
highly nonlinear due to the population dependence of the
pumping rate. The steady-state nuclear spin polarization
�Iz=�ipi�Ii has to be calculated self-consistently.

IV. RESULTS OF NUCLEAR SPIN POLARIZATION

Recent experiments have achieved NSP in InxGa1−xAs
QDs at various magnetic fields. NSP of 10−20 % is created

in In0.9Ga0.1As QDs at below 1 T,23 40% in In0.6Ga0.4As at
approximately 2 T,28,29 and 80% in In0.9Ga0.1As at 5 T.30 To
better understand the differences in these results, we calcu-
late the NSP in In0.25Ga0.75As �QD1�, In0.6Ga0.4As �QD2�,
and In0.9Ga0.1As �QD3� quantum dots at various magnetic
fields. The default temperature for our calculations is 4 K,
unless otherwise identified.

The Z component strain tensor eZZ is a good indication of
strain strength in our simplified model of the QD. As shown
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in Fig. 1, the largest electric field gradient is VZZ, which is
proportional to eZZ. Near the surface of a pancakelike pure
InAs QD embedded in GaAs, eZZ ranges between
4−8 %.32,38,39,42 Inside, the strain is distributed more or less
evenly, and eZZ is 3.5%, which is about half of the lattice
mismatch between InAs and GaAs �7%�. To give a quantita-
tive estimate, we assume that the strain information is com-
pletely contained in the eZZ tensor element, which reflects the
calculated lattice mismatch in dots with InxGa1−xAs
compositions.55 By interpolation, we estimate eZZ in QD1,
QD2, and QD3 to be 2.5%, 4.3%, and 6.3%, respectively.

It is worth noting that the electron g factor in a
InxGa1−xAs self-assembled quantum dot depends on the
strain strength.56 Based on the g factors given in
experiments,28,51,57 we take the g factors in QD1, QD2, and
QD3 to be −0.6, −0.7, and −0.8, respectively.

A. Single arsenic nuclear spin polarization

To understand nuclear spin polarization in different com-
positions of InxGa1−xAs quantum dots, we first start with the
nuclear spin polarization of As. The simplest case is the high
magnetic field region, as shown in Fig. 3�d�, where the
nuclear spin Zeeman energy is much larger than the quadru-
pole splitting. Here nuclear spin eigenstates are close to the
eigenstates of Iz so that �i�Iz�j�0. Accordingly, the depolar-
ization rates �see Eq. �7�� between nuclear spin states are
approximately zero. Therefore nuclear spins can be pumped
to the highest nuclear spin state and nearly full nuclear spin
polarization can be obtained.

In low to intermediate field regions, the calculation for
NSP becomes more complicated since the mixing between
different nuclear spin Zeeman states become stronger than
the higher-field case. The physical picture of various possible
transitions is given in Fig. 6.

According to Fig. 6, in the absence of all the depolariza-
tion channels, nuclear spins can always be pumped to the
highest spin state, and thus full NSP can be obtained. In the
absence of F12, no matter how strong other depolarization
channels �F23, F24, and F34� are, the nuclear spins can still be
pumped to state 1 eventually, and thus become fully polar-
ized. Once F12 is turned on, and in combination with F23 or
F24, the pumped nuclear spins in state 1 can now leak back to
state 3 or 4, and full polarization cannot be achieved. In other
words, F12 is the key to depolarization. As an example, we
plot all the depolarization rates and pumping rates in Fig. 7.

In the two limits where Ez
n�EQ and Ez

n�EQ, the state
spectrum is mostly Zeeman type �Fig. 3�d�� or quadrupole-

like �Fig. 3�a��. In these cases F23 and F24 are very small
compared to F12 �see Fig. 7� so that populations pumped into
states 1 and 2 cannot leak to states 3 and 4. We can now
simplify the four-level problem to a two-level problem, and
find the steady-state solution from the following equations:

p1̇ = − F12p1 + �D12 + �12 + F12�p2 = 0,

p1 + p2 = 1.

When Ez
n�EQ, the cotunneling-assisted spin-flip transition

D12 dominates, while when Ez
n�EQ the phonon-assisted

spin-flip transition �12 is dominant, especially above 5 T �see
Fig. 4�. At fields lower than approximately 5 T, the average
nuclear spin polarization can be expressed as follows:

�Iz �
1

2
+

1

1 +
F12

D12 + F12

�9�

while at higher fields

�Iz �
1

2
+

1

1 +
F12

�12 + F12

. �10�

From Eqs. �3� and �7�, when Ez
n�EQ, F12 is approximately

F12 = �AAs

N
�2

6�cfe�
2�EQ

Ez
n �2

�2 + �c
2�Ez

n�2 ,

and when Ez
n�EQ,

FIG. 7. �Color online� An example of pumping and depolariza-
tion rates in QD3. F13 and F14 do not appear here since they are
smaller than 10−5 /s. The state 2–4 degeneracy �where the nuclear
Zeeman and quadrupole splittings coincide� occurs at approxi-
mately 0.67 T, where F24 and F23 reach their peaks. The pumping
rates D+� �self-consistently� are calculated to self-consistency. In
other words, these are pumping rates when nuclear polarization is
already built up. D+� �random� are the initial pumping rates with a
random distribution of nuclear spins before the Overhauser field
builds up.

p1 p p p2 3 4
23 34FF

F24

F12

D12 23D + Γ D + Γ12 23 34+ Γ 34

FIG. 6. �Color online� Sketch of possible transitions between
nuclear spin states. The blue one-way arrows represent the pumping
channels and the red two-way arrows represent the depolarization
channels. The thickness of the arrows qualitatively represents the
strength of the corresponding transition.
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F12 = �AAs

N
�2 6�cfe�

2

�2 + �c
2�Ez

n�2 .

Equations �9� and �13� can give a very good qualitative ex-
planation to our calculations. At around 1.5–2 T, as shown in
Figs. 8�a� and 8�d�, D12 is at least one order of magnitude
smaller than F12, and the resulting �Iz from Eq. �9� is �1
�NSP is 67%�, and is independent of field gradients of dif-
ferent angles and strengths �which determine F12�.

There are some general trends in the NSP as evident in
Eq. �9� �we focus on the regime of B�5 T for our qualita-
tive discussion in the following paragraph�, where �Iz de-
pends only on the ratio of depolarization to polarization
F12 /D12,

�Iz �
1

2
+

1

1 +
F12/D12

1 + F12/D12

.

For Ez
n�EQ,

F12

D12
=

�2�EQ

Ez
n �2�� �

�c
�2

+ �− g��BBz + �n�2�
�� �

�c
�2

+ �Ez
n�2� , �11�

and for Ez
n�EQ,

F12

D12
�

�2�� �

�c
�2

+ �− g��BBz + �n�2�
� �

�c
�2 . �12�

Notice that for Ez
n�EQ the ratio F12 /D12 is proportional to

the square of EQ /Ez
n and �. When EQ or � increases, F12 /D12

increases, and the average NSP �Iz will decrease. This is
illustrated in the overall trends of Fig. 8. Likewise, in the
regime of Ez

n�EQ, the ratio F12 /D12 is proportional to �2 and
is a function of �c. Now when � increases, �Iz decreases,
again shown in Fig. 8. Furthermore, when the second term of
Eq. �12� is greater than the first �i.e., the electronic Zeeman
energy is greater than the cotunneling energy�, F12 /D12��c

2,
so that �Iz decreases when �c increases. As shown in Fig. 9,
the decrease in the cotunneling time constant ��c� enhances
the overlap of the electronic energy levels, and increases the
cross section of the hyperfine flip-flop processes. Therefore
the resulting NSP increases, as shown in Fig. 9.

The nonlinear nature of our system becomes most promi-
nent when the Overhauser field is antiparallel to the external
magnetic field, as shown in Figs. 8�a�–8�c�. Especially when
the Overhauser field cancels out the external magnetic field
�i.e., 2A�Izmax�g��BBext� in D12, as shown, for example, in
Fig. 10�b�. At this point the spin pumping rate D12 reaches its
maximum, which leads to the peaks around 3–4 T in Fig. 8.
The peak nuclear spin polarization is

FIG. 8. �Color online� Nuclear spin polarization of As in three different InxGa1−xAs quantum dots, QD1, QD2, and QD3. The strain
strengths in the dots are approximately proportional to the In concentration x. The solid, dashed, and dotted lines stand for the NSP in QD1,
QD2, and QD3 with x=0.25, 0.6, and 0.9 respectively. � represents the angle between the field gradient and the external magnetic field �the
z axis�. Here �=2°, 5°, and 9° are considered. Panels �a�–�c� show As nuclear spin polarizations at various strain conditions when the
Overhauser field is antiparallel to the external magnetic field. Panels �d�–�f� show the parallel case. Overall, stronger strain or greater angle
between the field gradient and growth direction suppresses the nuclear spin polarization.
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�Izmax �
1

2
+

1

1 +
�2�EQ

Ez
n �2� �

�c
�2

�� �
�c
�2+�Ez

n�2�

�
g��B

2A
Bext.

Therefore, when EQ increases, the peak polarization �Izmax
decreases. The corresponding external field Bext decreases as
well but that relationship is more complicated because Ez

n

also depends on Bext.
Equation �9� generally fits well with our numerical calcu-

lations, except for the case when the nuclear Zeeman energy
is equal to the quadrupole energy. When the nuclear Zeeman
energy is nearly resonant with the quadrupole energy, the
nuclear spin polarization is harder to build up because the
degeneracy between states 2 and 4 �see Fig. 3�b�� causes a
maximum in the depolarization rate F24, which is orders of
magnitude larger than all other transition rates. The presence
of this large transition rate equalizes the populations of states
2 and 4: p2= p4. Furthermore, in combination with F12, it also
prevents the nuclear spins from accumulating in the highest
nuclear spin state. By setting up the master equation of Eq.
�8�, we find the steady-state solution from the following
equations:

F12p1 = �D12 + F12�p2,

p3 � p4,

p1 + p2 + p3 + p4 = 1.

The average NSP is

�Iz = �
i

pi�Ii

�
3

2

1

1 + 4� F12

D12
� , �13�

where

F12 = �AAs

N
�2 6�cfe�

2

�2 + �c
2EQ

2 .

The achievable NSP at the 2–4 degeneracy point depends on
the relative direction of the Overhauser field and the external
magnetic field. When they are parallel, D12 is at least one
order of magnitude smaller than F12, thus the NSP at this
degeneracy is only a few percent, as shown in Figs.
8�d�–8�f�. When the fields are antiparallel, D12 may become
comparable to F12, and the resulting NSP strongly depends
on the ratio of F12 to D12, as shown in Figs. 8�a�–8�c� and
10�a�. If this ratio is closer to 1 �such as for QD1 and QD2�,
the resulting NSP could be as high as 20%, much higher than
that is achievable in the parallel field case. On the other
hand, if this ratio is far above 1 �in QD3�, the resulting NSP
is suppressed, as shown in Fig. 10�a�, while the field depen-
dence becomes abrupt.

In order to gain more understanding of the highly nonlin-
ear behavior of DNSP in QD3, we examine the time evolu-
tion of D12 at three different energy detunings, �1, �2, and �3,
away from the Zeeman-quadrupole resonance, as shown in
Fig. 11. According to panel �b�, when the pumping rate is
high enough to overcome the depolarization, the Overhauser
field starts to build up. When the Overhauser field cancels
out the external magnetic field, the pumping rate reaches a
maximum in the time evolution of the system �the spikes
shown in Fig. 11�b��. The Overhauser field quickly exceeds
the external magnetic field, and then this pumping rate falls
off to a steady value, in a short time correlated with the

FIG. 9. �Color online� Field dependence of As nuclear spin po-
larization at different cotunneling rates. As shown in panel �a�, the
decrease in the cotunneling time constant ��c�, or the increase in the
cotunneling energy, enhances the overlap of the electronic energy
levels, specifically when the external magnetic field is below ap-
proximately 5 T. The cross section of the hyperfine flip-flop pro-
cesses is increased and the resulting nuclear spin polarization in-
creases accordingly. Panel �b� is a zoom-in of panel �a� near the 2–4
degeneracy.

FIG. 10. �Color online� The As nuclear spin polarization near
2–4 degeneracy �panel �a�� and near the peak polarization �panel
�b��. The two panels are detailed views of Fig. 8�a� in these two
regions. Near 2–4 degeneracy NSP depends on the ratio F12 /D12, as
shown in Eq. �10�. In QD1 and QD2, F12 /D12�1, and the NSP is
above 10% even at the degeneracy point. In QD3, F12 /D12�1,
NSP is suppressed at the degeneracy and the field dependence of
NSP becomes abrupt. The NSP peaks in panel �b� around 3–4 T
occur when the Overhauser field cancels out the external magnetic
field. These peaks shift to the lower magnetic field and lower
nuclear polarization in stronger strain �see detail in text�.
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hyperfine energy, cotunneling time constant, and fe. For �3,
the NSP buildup time is approximately 10 s, and for �2 it is
30 s. For �1, the pumping never manages to overcome depo-
larization within our simulation time �2000 s�, and the NSP is
limited to a few percent. As the detuning � approaches zero,
F24 gets closer to its maximum, which is orders of magnitude
larger than all other rates. In this regime, it takes longer and
longer time to buildup the nuclear spin polarization, until it is
practically impossible—beyond tens of seconds, nuclear spin
relaxation channels that we do not consider, such as dipolar
induced spin diffusion and direct spin-lattice relaxation,
would have to be included for a complete physical picture to
emerge.

When the nuclear Zeeman energy is equal to twice the
quadrupole energy, nuclear spin states 3 and 4 are degener-
ate, as shown in Fig. 3�c�. However, the NSP around this
degeneracy is not as strongly affected as those near the 2–4
degeneracy. In this field region, F24 and F23 nearly vanish.
The strong F34 equalizes the population of states 3 and 4, so
that we can again isolate the four level problem to a two
level one, and NSP can be calculated by using Eq. �9�.

B. Nuclear spin polarization in different compositions
of InxGa1−xAs quantum dots

In all the NSP experiments in InxGa1−xAs QDs, the ob-
servable quantity is the total Overhauser field from all the
nuclei of all the nuclear spin species. Since different nuclear
isotopes have different gyromagnetic ratios �see Table I�, and
different nuclear spins generally experience different electric
field gradients, the DNSP features we study in the previous
section for a single nuclear spin species with a fixed quadru-
pole splitting would now occur in ranges of magnetic fields.
The total effect is a superposition of contributions from all
the individual ingredients. As we have discussed in Sec. III,
we do not consider interactions between nuclear spins,
whether they are of the same or different species.

To account for the distribution of strain in a QD, we as-
sume a uniform distribution of angles between the electric
field gradient and the applied magnetic field �which is along
z direction as always�. In Fig. 12, the angles between the
electric field gradient and the external magnetic field are in
the ranges of 0° –5° and 0° –9°. The peaks and dips in NSP
of a single nuclear spin species, as shown in Fig. 8, are now
smoothed out, as shown in Fig. 12.

Our results show a qualitative agreement with various
experiments.28,29,51 A high degree of nuclear spin polariza-
tion can be created in high-field regions while the polariza-
tion is limited in low-field regions. Overall the achievable
nuclear spin polarization in InxGa1−xAs QDs is related to the
concentration of indium and the resulting strain distribution
in the dots. In general, stronger strain and larger angle be-

(b)

(a)

FIG. 11. �Color online� Time evolution of nuclear spin polariza-
tion rate �panel �b�� at different energy detunings �defined in panel
�a�� in QD3 near the 2–4 degeneracy. The solid line at approximate
0.67 T in panel �a� stands for the 2–4 degeneracy, where As nuclear
Zeeman energy is resonant with the quadrupole energy. �1, �2, and
�3 are 1.7 neV, 1.75 neV, and 1.8 neV from this degeneracy, respec-
tively. Panel �b� shows that NSP buildup time for �3 is approxi-
mately 30 and 10 s for �2. For �1, within our simulation time of
2000 s, the nuclear spin polarization is not built up. Clearly, as �
decreases, F24 gets closer to its maximum, which is orders of mag-
nitude larger than all other rates, it takes longer and longer time to
buildup the NSP, until it cannot be built up.

FIG. 12. �Color online� The nuclear spin polarization in
In0.25Ga0.75As �solid lines�, In0.6Ga0.4As �dashed lines�, and
In0.9Ga0.1As �dotted lines� quantum dots. Panels �a� and �c� are for
dots with ��0–5° while panels �b� and �d� are for ��0–9°. Pan-
els �c� and �d� are expansions of the low field regions of panels �a�
and �b�, respectively. �a� represents the nuclear spin polarization
average over angles between 0° –5°. �b� represents the nuclear spin
polarization average over angles between 0° –9°. �c� and �d� are the
detail in low fields for �a� and �b�, respectively. Comparing scales of
panels �a� with �b�, or �c� with �d�, we note that stronger strain and
larger variations in the direction of the field gradient suppress the
nuclear spin polarization in low to intermediate fields.
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tween the field gradient and growth direction suppress the
nuclear spin polarization.

V. DISCUSSION

In our calculations of nuclear spin polarization, the spin
pumping is achieved by first optically orienting the electron
spins, then transferring the electron spin polarization to the
nuclear spins via either cotunneling-assisted processes or
phonon-assisted processes. In the latter we have not included
any spin mixing caused by spin-orbit interaction. However, it
is well known that the spin-orbit interaction is quite strong in
InAs dots.58 Thus we have also explored how the spin-orbit
interaction might take part in the DNSP.59,60 More specifi-
cally, we have calculated the spin-flip transition rate from the
combination of the hyperfine interaction, spin-orbit interac-
tion, and the electron-phonon interaction, and we find the
transition rate is linearly proportional to the electronic Zee-
man splitting. Our results show that the inclusion of spin-
orbit interaction into the spin-transfer process yields a slower
process �by 2 orders of magnitude even at the relatively low
magnetic field of 1 T� than the hyperfine interaction com-
bined with electron-phonon interaction alone. Therefore, we
exclude this mechanism from our current study.

Our calculations presented so far are done at T=4 K. We
have also explored the temperature dependence of the As
NSP in a QD. Both cotunneling and phonon emission/
absorption �especially absorption� are affected by tempera-
ture changes, via Fermi level broadening and phonon popu-
lations, so that spin-flip rate will change accordingly.
Consider, for example, nuclear spins being pumped to the
highest-energy state at high fields, where spin transitions are
assisted by phonon absorption, as shown in Fig. 5. We have
calculated As NSP at three different temperatures: 0.1, 4, and
60 K. The results are shown in the high-field region of Fig.
13, where the NSP can be built up to larger values at tem-
perature 60 K than 4 K and 0.1 K �especially at B�5 T�,
since at a fixed magnetic field the phonon population de-
creases as temperature decreases �N� 1

exp�E/kBT�−1 �. In the

low-field region, the spin transition is assisted by cotunnel-
ing, and the cotunneling time constant �c is inversely propor-
tional to the temperature.48 Therefore the cotunneling-
assisted processes are more efficient at higher
temperatures,61 as shown in Fig. 13. At present we do not
have a clear analytical understanding of the abrupt change in
NSP as shown in Fig. 11. We are currently working on a full
density-matrix method that includes all the off-diagonal
terms for the electron-nuclear spin system. Such a calcula-
tion could also help us ascertain the validity of the master
equation approach we adopt in the present study.

VI. CONCLUSIONS

In summary, we have calculated nuclear spin polarization
through optical orientation of electron spins in a self-
assembled quantum dot. We have explored how NSP of a
single nuclear species depends on the external magnetic field
with various strain strengths, angles between the electric
field gradient and the growth direction, and cotunneling en-
ergies. We show that, in high magnetic fields, higher degrees
of NSP can be achieved, where the nuclear spin Zeeman
energy is much larger than the quadrupole splitting. In this
regime the nuclear spin eigenstates are close to the eigen-
states of Iz so that the depolarization rates between nuclear
spin states are approximately zero. Therefore nuclear spins
can be pumped to the highest nuclear energy state without
leaking back to lower-energy states. In low to intermediate
field regions, NSP is strongly affected by the strain distribu-
tion. Generally speaking, in the same QD, the NSP is lower
when the electric field gradient is at a larger angle from the
external magnetic field, because strain along transverse di-
rections �relative to the magnetic field� is the driving force
behind depolarization transitions for the nuclear spins. In ad-
dition, NSP is lower at smaller cotunnelling rates �when, for
example, the allowed electronic state in the QD is far below
the Fermi sea�. Furthermore, NSP is also harder to buildup in
a QD with a larger magnitude of strain. Our calculation
shows that higher strain strength in a QD leads to smaller
NSP in general.

For NSP in InxGa1−xAs quantum dots, our results are ob-
tained from incoherent superpositions of In, Ga, and As con-
tributions in different proportions. We show that nearly full
nuclear spin polarization can be created in high-field regions,
while it is limited in low-field regions. Our results indicate
that the concentration of indium and the resulting strain dis-
tribution in the dots play a crucial role in DNSP. For ex-
ample, at low magnetic fields, nuclear spin polarization is
harder to buildup in In0.9Ga0.1As than in In0.6Ga0.4As. The
interplay between the nuclear quadrupole interaction and
Zeeman splitting could lead to suppression of nuclear spin
polarization. Our results are in qualitative agreement with the
measured nuclear spin polarization in the experimental work
of various groups.28–30,34,51

Our results suggest that for a dot with a uniform strain
distribution �and with a principal axis away from the external
magnetic field�, a minimum in NSP should be expected when
the nuclear Zeeman energy is equal to the quadrupole energy.
Moreover, a peak should be observed in the intermediate

FIG. 13. �Color online� Temperature dependence of As nuclear
spin polarization. The solid, dashed, and dotted lines stand for the
nuclear spin polarization at temperatures of 0.1 K, 4 K, and 60 K
respectively. The nuclear spin polarization is easier to buildup at
higher temperature since the phonon population and cotunneling
constants increase as temperature increases.
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field regions �around 3–4 T�, where the Overhauser field can-
cels out the external magnetic field.
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